Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic complexity for psychology: A user-friendly implementation of the coding theorem method (1409.4080v2)

Published 14 Sep 2014 in cs.CC and stat.AP

Abstract: Kolmogorov-Chaitin complexity has long been believed to be impossible to approximate when it comes to short sequences (e.g. of length 5-50). However, with the newly developed \emph{coding theorem method} the complexity of strings of length 2-11 can now be numerically estimated. We present the theoretical basis of algorithmic complexity for short strings (ACSS) and describe an R-package providing functions based on ACSS that will cover psychologists' needs and improve upon previous methods in three ways: (1) ACSS is now available not only for binary strings, but for strings based on up to 9 different symbols, (2) ACSS no longer requires time-consuming computing, and (3) a new approach based on ACSS gives access to an estimation of the complexity of strings of any length. Finally, three illustrative examples show how these tools can be applied to psychology.

Citations (54)

Summary

We haven't generated a summary for this paper yet.