Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FS^3: A Sampling based method for top-k Frequent Subgraph Mining (1409.1152v2)

Published 2 Sep 2014 in cs.DB

Abstract: Mining labeled subgraph is a popular research task in data mining because of its potential application in many different scientific domains. All the existing methods for this task explicitly or implicitly solve the subgraph isomorphism task which is computationally expensive, so they suffer from the lack of scalability problem when the graphs in the input database are large. In this work, we propose FS3, which is a sampling based method. It mines a small collection of subgraphs that are most frequent in the probabilistic sense. FS3 performs a Markov Chain Monte Carlo (MCMC) sampling over the space of a fixed-size subgraphs such that the potentially frequent subgraphs are sampled more often. Besides, FS3 is equipped with an innovative queue manager. It stores the sampled subgraph in a finite queue over the course of mining in such a manner that the top-k positions in the queue contain the most frequent subgraphs. Our experiments on database of large graphs show that FS3 is efficient, and it obtains subgraphs that are the most frequent amongst the subgraphs of a given size.

Citations (37)

Summary

We haven't generated a summary for this paper yet.