Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth (1409.0364v1)

Published 1 Sep 2014 in math.AP

Abstract: In this paper, we study an initial boundary value problem of the Cahn-Hilliard-Darcy system with a non-autonomous mass source term $S$ that models tumor growth. We first prove the existence of global weak solutions as well as the existence of unique local strong solutions in both 2D and 3D. Then we investigate the qualitative behavior of solutions in details when the spatial dimension is two. More precisely, we prove that the strong solution exists globally and it defines a closed dynamical process. Then we establish the existence of a minimal pullback attractor for translated bounded mass source $S$. Finally, when $S$ is assumed to be asymptotically autonomous, we demonstrate that any global weak/strong solution converges to a single steady state as $t\to+\infty$. An estimate on the convergence rate is also given.

Summary

We haven't generated a summary for this paper yet.