Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs (1409.0315v2)

Published 1 Sep 2014 in cs.CG

Abstract: An $st$-path in a drawing of a graph is self-approaching if during the traversal of the corresponding curve from $s$ to any point $t'$ on the curve the distance to $t'$ is non-increasing. A path has increasing chords if it is self-approaching in both directions. A drawing is self-approaching (increasing-chord) if any pair of vertices is connected by a self-approaching (increasing-chord) path. We study self-approaching and increasing-chord drawings of triangulations and 3-connected planar graphs. We show that in the Euclidean plane, triangulations admit increasing-chord drawings, and for planar 3-trees we can ensure planarity. We prove that strongly monotone (and thus increasing-chord) drawings of trees and binary cactuses require exponential resolution in the worst case, answering an open question by Kindermann et al. [GD'14]. Moreover, we provide a binary cactus that does not admit a self-approaching drawing. Finally, we show that 3-connected planar graphs admit increasing-chord drawings in the hyperbolic plane and characterize the trees that admit such drawings.

Citations (32)

Summary

We haven't generated a summary for this paper yet.