Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression, Restoration, Re-sampling, Compressive Sensing: Fast Transforms in Digital Imaging (1408.6335v1)

Published 27 Aug 2014 in cs.CV and physics.optics

Abstract: Transform image processing methods are methods that work in domains of image transforms, such as Discrete Fourier, Discrete Cosine, Wavelet and alike. They are the basic tool in image compression, in image restoration, in image re-sampling and geometrical transformations and can be traced back to early 1970-ths. The paper presents a review of these methods with emphasis on their comparison and relationships, from the very first steps of transform image compression methods to adaptive and local adaptive transform domain filters for image restoration, to methods of precise image re-sampling and image reconstruction from sparse samples and up to "compressive sensing" approach that has gained popularity in last few years. The review has a tutorial character and purpose.

Citations (26)

Summary

We haven't generated a summary for this paper yet.