Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel-based Information Criterion (1408.5810v2)

Published 25 Aug 2014 in stat.ML

Abstract: This paper introduces Kernel-based Information Criterion (KIC) for model selection in regression analysis. The novel kernel-based complexity measure in KIC efficiently computes the interdependency between parameters of the model using a variable-wise variance and yields selection of better, more robust regressors. Experimental results show superior performance on both simulated and real data sets compared to Leave-One-Out Cross-Validation (LOOCV), kernel-based Information Complexity (ICOMP), and maximum log of marginal likelihood in Gaussian Process Regression (GPR).

Citations (4)

Summary

We haven't generated a summary for this paper yet.