Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Moyal's Characteristic Function, the Density Matrix and von Neumann's Idempotent (1408.5680v1)

Published 25 Aug 2014 in quant-ph

Abstract: In the Wigner-Moyal approach to quantum mechanics, we show that Moyal's starting point, the characteristic function $M(\tau,\theta)=\int \psi{*}(x)e{i(\tau {\hat p}+\theta{\hat x})}\psi(x)dx$, is essentially the primitive idempotent used by von Neumann in his classic paper "Die Eindeutigkeit der Schr\"odingerschen Operatoren". This paper provides the original proof of the Stone-von Neumann equation. Thus the mathematical structure Moyal develops is simply a re-expression of what is at the heart of quantum mechanics and reproduces exactly the results of the quantum formalism. The "distribution function" $F(X,P,t)$ is simply the quantum mechanical density matrix expressed in an $( X,P)$-representation, where $X$ and $P$ are the mean co-ordinates of a cell structure in phase space. The whole approach therefore clearly has little to do with classical statistical theories but is a consequence of a non-commutative nature of the theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)