Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite densities for Lévy walks (1408.4479v2)

Published 19 Aug 2014 in cond-mat.stat-mech, math-ph, math.MP, and nlin.CD

Abstract: Motion of particles in many systems exhibits a mixture between periods of random diffusive like events and ballistic like motion. In many cases, such systems exhibit strong anomalous diffusion, where low order moments $< |x(t)|q >$ with $q$ below a critical value $q_c$ exhibit diffusive scaling while for $q>q_c$ a ballistic scaling emerges. The mixed dynamics constitutes a theoretical challenge since it does not fall into a unique category of motion, e.g., the known diffusion equations and central limit theorems fail to describe both aspects. In this paper we resolve this problem by resorting to the concept of infinite density. Using the widely applicable L\'evy walk model, we find a general expression for the corresponding non-normalized density which is fully determined by the particles velocity distribution, the anomalous diffusion exponent $\alpha$ and the diffusion coefficient $K_\alpha$. We explain how infinite densities play a central role in the description of dynamics of a large class of physical processes and discuss how they can be evaluated from experimental or numerical data.

Summary

We haven't generated a summary for this paper yet.