Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion (1408.4377v2)

Published 19 Aug 2014 in math.PR

Abstract: This paper establishes a discretization scheme for a large class of stochastic differential equations driven by a time-changed Brownian motion with drift, where the time change is given by a general inverse subordinator. The scheme involves two types of errors: one generated by application of the Euler-Maruyama scheme and the other ascribed to simulation of the inverse subordinator. With the two errors carefully examined, the orders of strong and weak convergence are derived. Numerical examples are attached to support the convergence results.

Summary

We haven't generated a summary for this paper yet.