Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enveloping algebras of some quantum Lie algebras (1408.4083v1)

Published 18 Aug 2014 in math.QA and math.KT

Abstract: We define a family of Hopf algebra objects, $H$, in the braided category of $\mathbb{Z}n$-modules (known as anyonic vector spaces), for which the property $\psi2{H\otimes H}=id_{H\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\psi2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analogous to the non-super and the super case, the well known relation between the periodic Hopf cyclic cohomology of an enveloping (super) algebra and the (super) Lie algebra homology also holds for these particular quantum Lie algebras, in the category of anyonic vector spaces.

Summary

We haven't generated a summary for this paper yet.