Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Diffusion-Based LMS for Node-Specific Adaptive Parameter Estimation (1408.3354v1)

Published 8 Aug 2014 in cs.CY and cs.DC

Abstract: A distributed adaptive algorithm is proposed to solve a node-specific parameter estimation problem where nodes are interested in estimating parameters of local interest, parameters of common interest to a subset of nodes and parameters of global interest to the whole network. To address the different node-specific parameter estimation problems, this novel algorithm relies on a diffusion-based implementation of different Least Mean Squares (LMS) algorithms, each associated with the estimation of a specific set of local, common or global parameters. Coupled with the estimation of the different sets of parameters, the implementation of each LMS algorithm is only undertaken by the nodes of the network interested in a specific set of local, common or global parameters. The study of convergence in the mean sense reveals that the proposed algorithm is asymptotically unbiased. Moreover, a spatial-temporal energy conservation relation is provided to evaluate the steady-state performance at each node in the mean-square sense. Finally, the theoretical results and the effectiveness of the proposed technique are validated through computer simulations in the context of cooperative spectrum sensing in Cognitive Radio networks.

Citations (85)

Summary

We haven't generated a summary for this paper yet.