Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frobenius and monodromy operators in rigid analysis, and Drinfel'd's symmetric space (1408.3346v1)

Published 14 Aug 2014 in math.AG and math.NT

Abstract: We define Frobenius and monodromy operators on the de Rham cohomology of $K$-dagger spaces (rigid spaces with overconvergent structure sheaves) with strictly semistable reduction $Y$, over a complete discrete valuation ring $K$ of mixed characteristic. For this we introduce log rigid cohomology and generalize the so called Hyodo-Kato isomorphism to versions for non-proper $Y$, for non-perfect residue fields, for non-integrally defined coefficients, and for the various strata of $Y$. We apply this to define and investigate crystalline structure elements on the de Rham cohomology of Drinfel'd's symmetric space $X$ and its quotients. Our results are used in a critical way in the recent proof of the monodromy-weight conjecture for quotients of $X$ given by de Shalit.

Summary

We haven't generated a summary for this paper yet.