Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dictionary Matching with One Gap (1408.2350v1)

Published 11 Aug 2014 in cs.DS

Abstract: The dictionary matching with gaps problem is to preprocess a dictionary $D$ of $d$ gapped patterns $P_1,\ldots,P_d$ over alphabet $\Sigma$, where each gapped pattern $P_i$ is a sequence of subpatterns separated by bounded sequences of don't cares. Then, given a query text $T$ of length $n$ over alphabet $\Sigma$, the goal is to output all locations in $T$ in which a pattern $P_i\in D$, $1\leq i\leq d$, ends. There is a renewed current interest in the gapped matching problem stemming from cyber security. In this paper we solve the problem where all patterns in the dictionary have one gap with at least $\alpha$ and at most $\beta$ don't cares, where $\alpha$ and $\beta$ are given parameters. Specifically, we show that the dictionary matching with a single gap problem can be solved in either $O(d\log d + |D|)$ time and $O(d\log{\varepsilon} d + |D|)$ space, and query time $O(n(\beta -\alpha )\log\log d \log 2 \min { d, \log |D| } + occ)$, where $occ$ is the number of patterns found, or preprocessing time and space: $O(d2 + |D|)$, and query time $O(n(\beta -\alpha ) + occ)$, where $occ$ is the number of patterns found. As far as we know, this is the best solution for this setting of the problem, where many overlaps may exist in the dictionary.

Citations (16)

Summary

We haven't generated a summary for this paper yet.