2000 character limit reached
Enumeration of three term arithmetic progressions in fixed density sets (1408.1063v3)
Published 5 Aug 2014 in math.CO
Abstract: Additive combinatorics is built around the famous theorem by Szemer\'edi which asserts existence of arithmetic progressions of any length among the integers. There exist several different proofs of the theorem based on very different techniques. Szemer\'edi's theorem is an existence statement, whereas the ultimate goal in combinatorics is always to make enumeration statements. In this article we develop new methods based on real algebraic geometry to obtain several quantitative statements on the number of arithmetic progressions in fixed density sets. We further discuss the possibility of a generalization of Szemer\'edi's theorem using methods from real algebraic geometry.