Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Determining the Number of Clusters via Iterative Consensus Clustering (1408.0967v1)

Published 5 Aug 2014 in stat.ML, cs.CV, and cs.LG

Abstract: We use a cluster ensemble to determine the number of clusters, k, in a group of data. A consensus similarity matrix is formed from the ensemble using multiple algorithms and several values for k. A random walk is induced on the graph defined by the consensus matrix and the eigenvalues of the associated transition probability matrix are used to determine the number of clusters. For noisy or high-dimensional data, an iterative technique is presented to refine this consensus matrix in way that encourages a block-diagonal form. It is shown that the resulting consensus matrix is generally superior to existing similarity matrices for this type of spectral analysis.

Citations (33)

Summary

We haven't generated a summary for this paper yet.