Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Cauchy Schwarz Independent Component Analysis for Blind Source Separation (1408.0192v1)

Published 1 Aug 2014 in cs.IT and math.IT

Abstract: We present a new high performance Convex Cauchy Schwarz Divergence (CCS DIV) measure for Independent Component Analysis (ICA) and Blind Source Separation (BSS). The CCS DIV measure is developed by integrating convex functions into the Cauchy Schwarz inequality. By including a convexity quality parameter, the measure has a broad control range of its convexity curvature. With this measure, a new CCS ICA algorithm is structured and a non parametric form is developed incorporating the Parzen window based distribution. Furthermore, pairwise iterative schemes are employed to tackle the high dimensional problem in BSS. We present two schemes of pairwise non parametric ICA algorithms, one is based on gradient decent and the second on the Jacobi Iterative method. Several case study scenarios are carried out on noise free and noisy mixtures of speech and music signals. Finally, the superiority of the proposed CCS ICA algorithm is demonstrated in metric comparison performance with FastICA, RobustICA, convex ICA (C ICA), and other leading existing algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.