Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Restricted Boltzmann Machines for Cold Start Recommendations (1408.0096v1)

Published 1 Aug 2014 in cs.IR, cs.LG, and stat.ML

Abstract: Restricted Boltzman Machines (RBMs) have been successfully used in recommender systems. However, as with most of other collaborative filtering techniques, it cannot solve cold start problems for there is no rating for a new item. In this paper, we first apply conditional RBM (CRBM) which could take extra information into account and show that CRBM could solve cold start problem very well, especially for rating prediction task. CRBM naturally combine the content and collaborative data under a single framework which could be fitted effectively. Experiments show that CRBM can be compared favourably with matrix factorization models, while hidden features learned from the former models are more easy to be interpreted.

Citations (8)

Summary

We haven't generated a summary for this paper yet.