Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic stability of Pollicott-Ruelle resonances (1407.8531v2)

Published 31 Jul 2014 in math.DS, math.AP, and math.SP

Abstract: Pollicott-Ruelle resonances for chaotic flows are the characteristic frequencies of correlations. They are typically defined as eigenvalues of the generator of the flow acting on specially designed functional spaces. We show that these resonances can be computed as viscosity limits of eigenvalues of second order elliptic operators. These eigenvalues are the characteristic frequencies of correlations for a stochastically perturbed flow.

Summary

We haven't generated a summary for this paper yet.