Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Twist operators in higher dimensions (1407.6429v1)

Published 24 Jul 2014 in hep-th

Abstract: We study twist operators in higher dimensional CFT's. In particular, we express their conformal dimension in terms of the energy density for the CFT in a particular thermal ensemble. We construct an expansion of the conformal dimension in power series around n=1, with n being replica parameter. We show that the coefficients in this expansion are determined by higher point correlations of the energy-momentum tensor. In particular, the first and second terms, i.e. the first and second derivatives of the scaling dimension, have a simple universal form. We test these results using holography and free field theory computations, finding agreement in both cases. We also consider the `operator product expansion' of spherical twist operators and finally, we examine the behaviour of correlators of twist operators with other operators in the limit n ->1.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.