Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some spectral properties of uniform hypergraphs (1407.5193v1)

Published 19 Jul 2014 in math.CO

Abstract: For a $k$-uniform hypergraph $H$, we obtain some trace formulas for the Laplacian tensor of $H$, which imply that $\sum_{i=1}nd_is$ ($s=1,\ldots,k$) is determined by the Laplacian spectrum of $H$, where $d_1,\ldots,d_n$ is the degree sequence of $H$. Using trace formulas for the Laplacian tensor, we obtain expressions for some coefficients of the Laplacian polynomial of a regular hypergraph. We give some spectral characterizations of odd-bipartite hypergraphs, and give a partial answer to a question posed by Shao et al \cite{ShaoShanWu}. We also give some spectral properties of power hypergraphs, and show that a conjecture posed by Hu et al \cite{HuQiShao} holds under certain conditons.

Summary

We haven't generated a summary for this paper yet.