Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor functors between Morita duals of fusion categories (1407.2783v4)

Published 10 Jul 2014 in math.QA, math.CT, and math.RT

Abstract: Given a fusion category $\mathcal{C}$ and an indecomposable $\mathcal{C}$-module category $\mathcal{M}$, the fusion category $\mathcal{C}*_\mathcal{M}$ of $\mathcal{C}$-module endofunctors of $\mathcal{M}$ is called the (Morita) dual fusion category of $\mathcal{C}$ with respect to $\mathcal{M}$. We describe tensor functors between two arbitrary duals $\mathcal{C}*_\mathcal{M}$ and $\mathcal{D}*_\mathcal{N}$ in terms of data associated to $\mathcal{C}$ and $\mathcal{D}$. We apply the results to $G$-equivariantizations of fusion categories and group-theoretical fusion categories. We describe the orbits of the action of the Brauer-Picard group on the set of module categories and we propose a categorification of the Rosenberg-Zelinsky sequence for fusion categories.

Summary

We haven't generated a summary for this paper yet.