Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smaller SDP for SOS Decomposition (1407.2679v3)

Published 10 Jul 2014 in math.OC

Abstract: A popular numerical method to compute SOS (sum of squares of polynomials) decompositions for polynomials is to transform the problem into semi-definite programming (SDP) problems and then solve them by SDP solvers. In this paper, we focus on reducing the sizes of inputs to SDP solvers to improve the efficiency and reliability of those SDP based methods. Two types of polynomials, convex cover polynomials and split polynomials, are defined. A convex cover polynomial or a split polynomial can be decomposed into several smaller sub-polynomials such that the original polynomial is SOS if and only if the sub-polynomials are all SOS. Thus the original SOS problem can be decomposed equivalently into smaller sub-problems. It is proved that convex cover polynomials are split polynomials and it is quite possible that sparse polynomials with many variables are split polynomials, which can be efficiently detected in practice. Some necessary conditions for polynomials to be SOS are also given, which can help refute quickly those polynomials which have no SOS representations so that SDP solvers are not called in this case. All the new results lead to a new SDP based method to compute SOS decompositions, which improves this kind of methods by passing smaller inputs to SDP solvers in some cases. Experiments show that the number of monomials obtained by our program is often smaller than that by other SDP based software, especially for polynomials with many variables and high degrees. Numerical results on various tests are reported to show the performance of our program.

Summary

We haven't generated a summary for this paper yet.