Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High frequency homogenisation for elastic lattices (1407.2059v1)

Published 8 Jul 2014 in physics.class-ph

Abstract: A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented by a pair of illustrative examples for two archetypal classes of two-dimensional elastic lattices. The efficiency of the asymptotic approach in accurately describing several interesting phenomena is demonstrated, including dynamic anisotropy and Dirac cones.

Summary

We haven't generated a summary for this paper yet.