Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic lower bounds in estimating jumps (1407.0241v1)

Published 1 Jul 2014 in math.ST and stat.TH

Abstract: We study the problem of the efficient estimation of the jumps for stochastic processes. We assume that the stochastic jump process $(X_t){t\in[0,1]}$ is observed discretely, with a sampling step of size $1/n$. In the spirit of Hajek's convolution theorem, we show some lower bounds for the estimation error of the sequence of the jumps $(\Delta X{T_k})k$. As an intermediate result, we prove a LAMN property, with rate $\sqrt{n}$, when the marks of the underlying jump component are deterministic. We deduce then a convolution theorem, with an explicit asymptotic minimal variance, in the case where the marks of the jump component are random. To prove that this lower bound is optimal, we show that a threshold estimator of the sequence of jumps $(\Delta X{T_k})_k$ based on the discrete observations, reaches the minimal variance of the previous convolution theorem.

Summary

We haven't generated a summary for this paper yet.