Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure (1407.0050v1)

Published 30 Jun 2014 in stat.ME, q-bio.GN, q-bio.PE, and stat.AP

Abstract: Admixture models are a ubiquitous approach to capture latent population structure in genetic samples. Despite the widespread application of admixture models, little thought has been devoted to the quality of the model fit or the accuracy of the estimates of parameters of interest for a particular study. Here we develop methods for validating admixture models based on posterior predictive checks (PPCs), a Bayesian method for assessing the quality of a statistical model. We develop PPCs for five population-level statistics of interest: within-population genetic variation, background linkage disequilibrium, number of ancestral populations, between-population genetic variation, and the downstream use of admixture parameters to correct for population structure in association studies. Using PPCs, we evaluate the quality of the model estimates for four qualitatively different population genetic data sets: the POPRES European individuals, the HapMap phase 3 individuals, continental Indians, and African American individuals. We found that the same model fitted to different genomic studies resulted in highly study-specific results when evaluated using PPCs, illustrating the utility of PPCs for model-based analyses in large genomic studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube