Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wisdom of the Confident: Using Social Interactions to Eliminate the Bias in Wisdom of the Crowds (1406.7578v1)

Published 30 Jun 2014 in cs.SI and physics.soc-ph

Abstract: Human groups can perform extraordinary accurate estimations compared to individuals by simply using the mean, median or geometric mean of the individual estimations [Galton 1907, Surowiecki 2005, Page 2008]. However, this is true only for some tasks and in general these collective estimations show strong biases. The method fails also when allowing for social interactions, which makes the collective estimation worse as individuals tend to converge to the biased result [Lorenz et al. 2011]. Here we show that there is a bright side of this apparently negative impact of social interactions into collective intelligence. We found that some individuals resist the social influence and, when using the median of this subgroup, we can eliminate the bias of the wisdom of the full crowd. To find this subgroup of individuals more confident in their private estimations than in the social influence, we model individuals as estimators that combine private and social information with different relative weights [Perez-Escudero & de Polavieja 2011, Arganda et al. 2012]. We then computed the geometric mean for increasingly smaller groups by eliminating those using in their estimations higher values of the social influence weight. The trend obtained in this procedure gives unbiased results, in contrast to the simpler method of computing the median of the complete group. Our results show that, while a simple operation like the mean, median or geometric mean of a group may not allow groups to make good estimations, a more complex operation taking into account individuality in the social dynamics can lead to a better collective intelligence.

Citations (7)

Summary

We haven't generated a summary for this paper yet.