Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Hardy estimate for commutators of pseudo-differential operators (1406.7393v3)

Published 28 Jun 2014 in math.CA

Abstract: Let $T$ be a pseudo-differential operator whose symbol belongs to the H\"ormander class $Sm_{\rho,\delta}$ with $0\leq \delta<1, 0< \rho\leq 1, \delta \leq \rho$ and $-(n+1)< m \leq - (n+1)(1-\rho)$. In present paper, we prove that if $b$ is a locally integrable function satisfying $$\sup_{{\rm balls}\; B\subset \mathbb Rn} \frac{\log(e+ 1/|B|)}{(1+ |B|)\theta} \frac{1}{|B|}\int_{B} \Big|f(x)- \frac{1}{|B|}\int_{B} f(y) dy\Big|dx <\infty$$ for some $\theta\in [0,\infty)$, then the commutator $[b,T]$ is bounded on the local Hardy space $h1(\mathbb Rn)$ introduced by Goldberg \cite{Go}. As a consequence, when $\rho=1$ and $m=0$, we obtain an improvement of a recent result by Yang, Wang and Chen \cite{YWC}.

Summary

We haven't generated a summary for this paper yet.