Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on drastic product logic (1406.7166v1)

Published 27 Jun 2014 in math.LO

Abstract: The drastic product $*D$ is known to be the smallest $t$-norm, since $x *_D y = 0$ whenever $x, y < 1$. This $t$-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product $t$-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called ${\rm S}{3}{\rm MTL}$ in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the $\Delta$ projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.

Summary

We haven't generated a summary for this paper yet.