Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data augmentation for models based on rejection sampling (1406.6652v2)

Published 25 Jun 2014 in stat.CO

Abstract: We present a data augmentation scheme to perform Markov chain Monte Carlo inference for models where data generation involves a rejection sampling algorithm. Our idea, which seems to be missing in the literature, is a simple scheme to instantiate the rejected proposals preceding each data point. The resulting joint probability over observed and rejected variables can be much simpler than the marginal distribution over the observed variables, which often involves intractable integrals. We consider three problems, the first being the modeling of flow-cytometry measurements subject to truncation. The second is a Bayesian analysis of the matrix Langevin distribution on the Stiefel manifold, and the third, Bayesian inference for a nonparametric Gaussian process density model. The latter two are instances of problems where Markov chain Monte Carlo inference is doubly-intractable. Our experiments demonstrate superior performance over state-of-the-art sampling algorithms for such problems.

Summary

We haven't generated a summary for this paper yet.