Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constant Factor Approximation for Balanced Cut in the PIE model (1406.5665v1)

Published 22 Jun 2014 in cs.DS and cs.LG

Abstract: We propose and study a new semi-random semi-adversarial model for Balanced Cut, a planted model with permutation-invariant random edges (PIE). Our model is much more general than planted models considered previously. Consider a set of vertices V partitioned into two clusters $L$ and $R$ of equal size. Let $G$ be an arbitrary graph on $V$ with no edges between $L$ and $R$. Let $E_{random}$ be a set of edges sampled from an arbitrary permutation-invariant distribution (a distribution that is invariant under permutation of vertices in $L$ and in $R$). Then we say that $G + E_{random}$ is a graph with permutation-invariant random edges. We present an approximation algorithm for the Balanced Cut problem that finds a balanced cut of cost $O(|E_{random}|) + n \text{polylog}(n)$ in this model. In the regime when $|E_{random}| = \Omega(n \text{polylog}(n))$, this is a constant factor approximation with respect to the cost of the planted cut.

Citations (27)

Summary

We haven't generated a summary for this paper yet.