Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics (1406.4775v1)

Published 18 Jun 2014 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Principal component analysis (PCA) aims at estimating the direction of maximal variability of a high-dimensional dataset. A natural question is: does this task become easier, and estimation more accurate, when we exploit additional knowledge on the principal vector? We study the case in which the principal vector is known to lie in the positive orthant. Similar constraints arise in a number of applications, ranging from analysis of gene expression data to spike sorting in neural signal processing. In the unconstrained case, the estimation performances of PCA has been precisely characterized using random matrix theory, under a statistical model known as the `spiked model.' It is known that the estimation error undergoes a phase transition as the signal-to-noise ratio crosses a certain threshold. Unfortunately, tools from random matrix theory have no bearing on the constrained problem. Despite this challenge, we develop an analogous characterization in the constrained case, within a one-spike model. In particular: $(i)$~We prove that the estimation error undergoes a similar phase transition, albeit at a different threshold in signal-to-noise ratio that we determine exactly; $(ii)$~We prove that --unlike in the unconstrained case-- estimation error depends on the spike vector, and characterize the least favorable vectors; $(iii)$~We show that a non-negative principal component can be approximately computed --under the spiked model-- in nearly linear time. This despite the fact that the problem is non-convex and, in general, NP-hard to solve exactly.

Citations (103)

Summary

We haven't generated a summary for this paper yet.