Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mass Classification Method in Mammogram Using Fuzzy K-Nearest Neighbour Equality (1406.4770v1)

Published 18 Jun 2014 in cs.CV

Abstract: Mass classification of objects is an important area of research and application in a variety of fields. In this paper, we present an efficient computer aided mass classification method in digitized mammograms using Fuzzy K-Nearest Neighbor Equality, which performs benign or malignant classification on region of interest that contains mass. One of the major mammographic characteristics for mass classification is texture. Fuzzy K-Nearest Neighbor Equality exploits this important factor to classify the mass into benign or malignant. The statistical textural features used in characterizing the masses are Haralick and Run length features. The main aim of the method is to increase the effectiveness and efficiency of the classification process in an objective manner to reduce the numbers of false positive of malignancies. In this paper proposes a novel Fuzzy K-Nearest Neighbor Equality algorithm for classifying the marked regions into benign and malignant and 94.46 sensitivity,96.81 specificity and 96.52 accuracy is achieved that is very much promising compare to the radiologists' accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.