Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Recovery of Sparse Signals via $l_p-$Minimization (1406.4328v1)

Published 17 Jun 2014 in cs.IT and math.IT

Abstract: In this paper, we show that, under the assumption that $|\e|2\leq \epsilon$, every $k-$sparse signal $\x\in \mathbb{R}n$ can be stably ($\epsilon\neq0$) or exactly recovered ($\epsilon=0$) from $\y=\A\x+\e$ via $l_p-$mnimization with $p\in(0, \bar{p}]$, where \beqnn \bar{p}= \begin{cases} \frac{50}{31}(1-\delta{2k}), &\delta_{2k}\in[\frac{\sqrt{2}}{2}, 0.7183)\cr 0.4541, &\delta_{2k}\in[0.7183,0.7729)\cr 2(1-\delta_{2k}), &\delta_{2k}\in[0.7729,1) \end{cases}, \eeqnn even if the restricted isometry constant of $\A$ satisfies $\delta_{2k}\in[\frac{\sqrt{2}}{2}, 1)$. Furthermore, under the assumption that $n\leq 4k$, we show that the range of $p$ can be further improved to $p\in(0,\frac{3+2\sqrt{2}}{2}(1-\delta_{2k})]$. This not only extends some discussions of only the noiseless recovery (Lai et al. and Wu et al.) to the noise recovery, but also greatly improves the best existing results where $p\in(0,\min{1, 1.0873(1-\delta_{2k}) })$ (Wu et al.).

Citations (101)

Summary

We haven't generated a summary for this paper yet.