Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Medical Treatments Using Novel Reinforcement Learning Algorithms (1406.3922v2)

Published 16 Jun 2014 in cs.LG and stat.ML

Abstract: In both the fields of computer science and medicine there is very strong interest in developing personalized treatment policies for patients who have variable responses to treatments. In particular, I aim to find an optimal personalized treatment policy which is a non-deterministic function of the patient specific covariate data that maximizes the expected survival time or clinical outcome. I developed an algorithmic framework to solve multistage decision problem with a varying number of stages that are subject to censoring in which the "rewards" are expected survival times. In specific, I developed a novel Q-learning algorithm that dynamically adjusts for these parameters. Furthermore, I found finite upper bounds on the generalized error of the treatment paths constructed by this algorithm. I have also shown that when the optimal Q-function is an element of the approximation space, the anticipated survival times for the treatment regime constructed by the algorithm will converge to the optimal treatment path. I demonstrated the performance of the proposed algorithmic framework via simulation studies and through the analysis of chronic depression data and a hypothetical clinical trial. The censored Q-learning algorithm I developed is more effective than the state of the art clinical decision support systems and is able to operate in environments when many covariate parameters may be unobtainable or censored.

Citations (4)

Summary

We haven't generated a summary for this paper yet.