2000 character limit reached
Existence of Neumann and singular solutions of the fast diffusion equation (1406.2776v4)
Published 11 Jun 2014 in math.AP
Abstract: Let $\Omega$ be a smooth bounded domain in $\Rn$, $n\ge 3$, $0<m\le\frac{n-2}{n}$, $a_1,a_2,..., a_{i_0}\in\Omega$, $\delta_0=\min_{1\le i\le i_0}{dist }(a_i,\1\Omega)$ and let $\Omega_{\delta}=\Omega\setminus\cup_{i=1}^{i_0}B_{\delta}(a_i)$ and $\hat{\Omega}=\Omega\setminus\{a_1\,...,a_{i_0}\}$. For any $0<\delta<\delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=\Delta u^m$ in $\Omega_{\delta}\times (0,T)$ for some $T\>0$. We will prove the existence of singular solutions of this equation in $\hat{\Omega}\times (0,T)$ for some $T>0$ that blow-up at the points $a_1,..., a_{i_0}$.