Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Personalization To Facilitate Privacy (1406.2398v1)

Published 10 Jun 2014 in cs.SI, cs.CY, and physics.soc-ph

Abstract: Online social networks have enabled new methods and modalities of collaboration and sharing. These advances bring privacy concerns: online social data is more accessible and persistent and simultaneously less contextualized than traditional social interactions. To allay these concerns, many web services allow users to configure their privacy settings based on a set of multiple-choice questions. We suggest a new paradigm for privacy options. Instead of suggesting the same defaults to each user, services can leverage knowledge of users' traits to recommend a machine-learned prediction of their privacy preferences for Facebook. As a case study, we build and evaluate MyPrivacy, a publicly available web application that suggests personalized privacy settings. An evaluation with 199 users shows that users find the suggestions to be appropriate and private; furthermore, they express intent to implement the recommendations made by MyPrivacy. This supports the proposal to put personalization to work in online communities to promote privacy and security.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tehila Minkus (1 paper)
  2. Nasir Memon (35 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.