Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the probability of staying above a wall for the (2+1)-dimensional SOS model at low temperature (1406.1206v2)

Published 4 Jun 2014 in math.PR, math-ph, and math.MP

Abstract: We obtain sharp asymptotics for the probability that the (2+1)-dimensional discrete SOS interface at low temperature is positive in a large region. For a square region $\Lambda$, both under the infinite volume measure and under the measure with zero boundary conditions around $\Lambda$, this probability turns out to behave like $\exp(-\tau_\beta(0) L \log L )$, with $\tau_\beta(0)$ the surface tension at zero tilt, also called step free energy, and $L$ the box side. This behavior is qualitatively different from the one found for continuous height massless gradient interface models.

Summary

We haven't generated a summary for this paper yet.