Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maxwell-Laman counts for bar-joint frameworks in normed spaces (1406.0998v1)

Published 4 Jun 2014 in math.MG and math.CO

Abstract: The rigidity matrix is a fundamental tool for studying the infinitesimal rigidity properties of Euclidean bar-joint frameworks. In this paper we generalize this tool and introduce a rigidity matrix for bar-joint frameworks in arbitrary finite dimensional real normed vector spaces. Using this new matrix, we derive necessary Maxwell-Laman-type counting conditions for a well-positioned bar-joint framework in a real normed vector space to be infinitesimally rigid. Moreover, we derive symmetry-extended counting conditions for a bar-joint framework with a non-trivial symmetry group to be isostatic (i.e., minimally infinitesimally rigid). These conditions imply very simply stated restrictions on the number of those structural components that are fixed by the various symmetry operations of the framework. Finally, we offer some observations and conjectures regarding combinatorial characterisations of 2-dimensional symmetric, isostatic bar-joint frameworks where the unit ball is a quadrilateral.

Summary

We haven't generated a summary for this paper yet.