Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal network inference using biochemical kinetics (1406.0063v1)

Published 31 May 2014 in stat.AP

Abstract: Network models are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of these systems are generally nonlinear, suggesting that suitable nonlinear formulations may offer gains with respect to network inference and associated prediction problems. We present a general framework for both network inference and dynamical prediction that is rooted in nonlinear biochemical kinetics. This is done by considering a dynamical system based on a chemical reaction graph and associated kinetics parameters. Inference regarding both parameters and the reaction graph itself is carried out within a fully Bayesian framework. Prediction of dynamical behavior is achieved by averaging over both parameters and reaction graphs, allowing prediction even when the underlying reactions themselves are unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that nonlinear formulations can yield gains in network inference and permit dynamical prediction in the challenging setting where the reaction graph is unknown.

Summary

We haven't generated a summary for this paper yet.