Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the Landauer principle in quantum statistical mechanics (1406.0034v1)

Published 30 May 2014 in math-ph, math.MP, and quant-ph

Abstract: The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.

Summary

We haven't generated a summary for this paper yet.