Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniqueness of the maximal ideal of operators on the $\ell_p$-sum of $\ell_\infty^n\ (n\in\mathbb{N})$ for $1<p<\infty$ (1405.5715v1)

Published 22 May 2014 in math.FA

Abstract: A recent result of Leung (Proceedings of the American Mathematical Society, to appear) states that the Banach algebra $\mathscr{B}(X)$ of bounded, linear operators on the Banach space $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\inftyn\bigr)_{\ell_1}$ contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\inftyn\bigr)_{\ell_p}$ and $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_1n\bigr)_{\ell_p}$ whenever $p\in(1,\infty)$.

Summary

We haven't generated a summary for this paper yet.