Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of the robust weighted independent set problems on interval graphs (1405.5376v1)

Published 21 May 2014 in cs.DS

Abstract: This paper deals with the max-min and min-max regret versions of the maximum weighted independent set problem on interval graphswith uncertain vertex weights. Both problems have been recently investigated by Nobibon and Leus (2014), who showed that they are NP-hard for two scenarios and strongly NP-hard if the number of scenarios is a part of the input. In this paper, new complexity and approximation results on the problems under consideration are provided, which extend the ones previously obtained. Namely, for the discrete scenario uncertainty representation it is proven that if the number of scenarios $K$ is a part of the input, then the max-min version of the problem is not at all approximable. On the other hand, its min-max regret version is approximable within $K$ and not approximable within $O(\log{1-\epsilon}K)$ for any $\epsilon>0$ unless the problems in NP have quasi polynomial algorithms. Furthermore, for the interval uncertainty representation it is shown that the min-max regret version is NP-hard and approximable within 2.

Citations (7)

Summary

We haven't generated a summary for this paper yet.