Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-dimensional reflected diffusions with two boundaries and an inverse first-hitting problem (1405.5333v1)

Published 21 May 2014 in math.PR

Abstract: We study an inverse first-hitting problem for a one-dimensional, time-homogeneous diffusion $X(t)$ reflected between two boundaries $a$ and $b,$ which starts from a random position $\eta.$ Let $a \le S \le b$ be a given threshold, such that $P( \eta \in [a,S])=1,$ and $F$ an assigned distribution function. The problem consists of finding the distribution of $\eta$ such that the first-hitting time of $X$ to $S$ has distribution $F.$ This is a generalization of the analogous problem for ordinary diffusions, i.e. without reflecting, previously considered by the author.

Summary

We haven't generated a summary for this paper yet.