Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opposition Based ElectromagnetismLike for Global Optimization (1405.5172v1)

Published 20 May 2014 in cs.AI

Abstract: Electromagnetismlike Optimization (EMO) is a global optimization algorithm, particularly well suited to solve problems featuring nonlinear and multimodal cost functions. EMO employs searcher agents that emulate a population of charged particles which interact to each other according to electromagnetisms laws of attraction and repulsion. However, EMO usually requires a large number of iterations for a local search procedure; any reduction or cancelling over such number, critically perturb other issues such as convergence, exploration, population diversity and accuracy. This paper presents an enhanced EMO algorithm called OBEMO, which employs the Opposition-Based Learning (OBL) approach to accelerate the global convergence speed. OBL is a machine intelligence strategy which considers the current candidate solution and its opposite value at the same time, achieving a faster exploration of the search space. The proposed OBEMO method significantly reduces the required computational effort yet avoiding any detriment to the good search capabilities of the original EMO algorithm. Experiments are conducted over a comprehensive set of benchmark functions, showing that OBEMO obtains promising performance for most of the discussed test problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.