Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rough paths, Signatures and the modelling of functions on streams (1405.4537v1)

Published 18 May 2014 in math.PR, math.CA, math.RA, math.ST, q-fin.MF, and stat.TH

Abstract: Rough path theory is focused on capturing and making precise the interactions between highly oscillatory and non-linear systems. It draws on the analysis of LC Young and the geometric algebra of KT Chen. The concepts and the uniform estimates, have widespread application and have simplified proofs of basic questions from the large deviation theory and extended Ito's theory of SDEs; the recent applications contribute to (Graham) automated recognition of Chinese handwriting and (Hairer) formulation of appropriate SPDEs to model randomly evolving interfaces. At the heart of the mathematics is the challenge of describing a smooth but potentially highly oscillatory and vector valued path $x_{t}$ parsimoniously so as to effectively predict the response of a nonlinear system such as $dy_{t}=f(y_{t})dx_{t}$, $y_{0}=a$. The Signature is a homomorphism from the monoid of paths into the grouplike elements of a closed tensor algebra. It provides a graduated summary of the path $x$. Hambly and Lyons have shown that this non-commutative transform is faithful for paths of bounded variation up to appropriate null modifications. Among paths of bounded variation with given Signature there is always a unique shortest representative. These graduated summaries or features of a path are at the heart of the definition of a rough path; locally they remove the need to look at the fine structure of the path. Taylor's theorem explains how any smooth function can, locally, be expressed as a linear combination of certain special functions (monomials based at that point). Coordinate iterated integrals form a more subtle algebra of features that can describe a stream or path in an analogous way; they allow a definition of rough path and a natural linear "basis" for functions on streams that can be used for machine learning.

Citations (130)

Summary

We haven't generated a summary for this paper yet.