Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressive Imaging via Approximate Message Passing with Image Denoising (1405.4429v2)

Published 17 May 2014 in cs.IT and math.IT

Abstract: We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over existing compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose compressive imaging algorithms that employ the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising at each iteration; in order for AMP to reconstruct the original input signal well, a good denoiser must be used. We apply two wavelet based image denoisers within AMP. The first denoiser is the "amplitude-scaleinvariant Bayes estimator" (ABE), and the second is an adaptive Wiener filter; we call our AMP based algorithms for compressive imaging AMP-ABE and AMP-Wiener. Numerical results show that both AMP-ABE and AMP-Wiener significantly improve over the state of the art in terms of runtime. In terms of reconstruction quality, AMP-Wiener offers lower mean square error (MSE) than existing compressive imaging algorithms. In contrast, AMP-ABE has higher MSE, because ABE does not denoise as well as the adaptive Wiener filter.

Citations (88)

Summary

We haven't generated a summary for this paper yet.