Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Peacock: Learning Long-Tail Topic Features for Industrial Applications (1405.4402v3)

Published 17 May 2014 in cs.IR and cs.DC

Abstract: Latent Dirichlet allocation (LDA) is a popular topic modeling technique in academia but less so in industry, especially in large-scale applications involving search engine and online advertising systems. A main underlying reason is that the topic models used have been too small in scale to be useful; for example, some of the largest LDA models reported in literature have up to $103$ topics, which cover difficultly the long-tail semantic word sets. In this paper, we show that the number of topics is a key factor that can significantly boost the utility of topic-modeling systems. In particular, we show that a "big" LDA model with at least $105$ topics inferred from $109$ search queries can achieve a significant improvement on industrial search engine and online advertising systems, both of which serving hundreds of millions of users. We develop a novel distributed system called Peacock to learn big LDA models from big data. The main features of Peacock include hierarchical distributed architecture, real-time prediction and topic de-duplication. We empirically demonstrate that the Peacock system is capable of providing significant benefits via highly scalable LDA topic models for several industrial applications.

Citations (60)

Summary

We haven't generated a summary for this paper yet.