Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory (1405.3656v2)
Abstract: We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specific integer divisor class on $Y$ as a fractional linear combination of the resolution divisors associated with the Cartan subalgebra of $G$. This divisor class can be interpreted as an element of the refined coweight lattice of the gauge group. As a result, the spectrum of admissible matter representations is strongly constrained and the gauge group is non-simply connected. We exemplify our results by a detailed analysis of the general elliptic fibration with Mordell-Weil group $\mathbb Z_2$ and $\mathbb Z_3$ as well as a further specialization to $\mathbb Z \oplus \mathbb Z_2$. Our analysis exploits the representation of these fibrations as hypersurfaces in toric geometry.
Collections
Sign up for free to add this paper to one or more collections.