Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study of Entanglement in a Categorical Framework of Natural Language (1405.2874v2)

Published 12 May 2014 in cs.CL, cs.AI, math.CT, and quant-ph

Abstract: In both quantum mechanics and corpus linguistics based on vector spaces, the notion of entanglement provides a means for the various subsystems to communicate with each other. In this paper we examine a number of implementations of the categorical framework of Coecke, Sadrzadeh and Clark (2010) for natural language, from an entanglement perspective. Specifically, our goal is to better understand in what way the level of entanglement of the relational tensors (or the lack of it) affects the compositional structures in practical situations. Our findings reveal that a number of proposals for verb construction lead to almost separable tensors, a fact that considerably simplifies the interactions between the words. We examine the ramifications of this fact, and we show that the use of Frobenius algebras mitigates the potential problems to a great extent. Finally, we briefly examine a machine learning method that creates verb tensors exhibiting a sufficient level of entanglement.

Citations (62)

Summary

We haven't generated a summary for this paper yet.