Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mechanism Design for Crowdsourcing: An Optimal 1-1/e Competitive Budget-Feasible Mechanism for Large Markets (1405.2452v3)

Published 10 May 2014 in cs.GT

Abstract: In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is - if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility. We note that although the previous work has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve an approximation factor better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves an approximation factor of 1-1/e (i.e. almost 0.63). Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism which is used in all the previous works so far on this problem. Interestingly, we also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1-1/e; thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the markets are large.

Citations (76)

Summary

We haven't generated a summary for this paper yet.